from __future__ import print_function
import collections
import time
from ray.tune.result import (EPISODE_REWARD_MEAN, MEAN_ACCURACY, MEAN_LOSS,
TRAINING_ITERATION, TIME_TOTAL_S, TIMESTEPS_TOTAL)
from ray.tune.utils import unflattened_lookup
try:
from collections.abc import Mapping
except ImportError:
from collections import Mapping
try:
from tabulate import tabulate
except ImportError:
raise ImportError("ray.tune in ray > 0.7.5 requires 'tabulate'. "
"Please re-run 'pip install ray[tune]' or "
"'pip install ray[rllib]'.")
[docs]class ProgressReporter:
"""Abstract class for experiment progress reporting.
`should_report()` is called to determine whether or not `report()` should
be called. Tune will call these functions after trial state transitions,
receiving training results, and so on.
"""
[docs] def should_report(self, trials, done=False):
"""Returns whether or not progress should be reported.
Args:
trials (list[Trial]): Trials to report on.
done (bool): Whether this is the last progress report attempt.
"""
raise NotImplementedError
[docs] def report(self, trials, done, *sys_info):
"""Reports progress across trials.
Args:
trials (list[Trial]): Trials to report on.
done (bool): Whether this is the last progress report attempt.
sys_info: System info.
"""
raise NotImplementedError
class TuneReporterBase(ProgressReporter):
"""Abstract base class for the default Tune reporters.
Args:
metric_columns (dict[str, str]|list[str]): Names of metrics to
include in progress table. If this is a dict, the keys should
be metric names and the values should be the displayed names.
If this is a list, the metric name is used directly.
parameter_columns (dict[str, str]|list[str]): Names of parameters to
include in progress table. If this is a dict, the keys should
be parameter names and the values should be the displayed names.
If this is a list, the parameter name is used directly. If empty,
defaults to all available parameters.
max_progress_rows (int): Maximum number of rows to print
in the progress table. The progress table describes the
progress of each trial. Defaults to 20.
max_error_rows (int): Maximum number of rows to print in the
error table. The error table lists the error file, if any,
corresponding to each trial. Defaults to 20.
max_report_frequency (int): Maximum report frequency in seconds.
Defaults to 5s.
"""
# Truncated representations of column names (to accommodate small screens).
DEFAULT_COLUMNS = collections.OrderedDict({
MEAN_ACCURACY: "acc",
MEAN_LOSS: "loss",
TRAINING_ITERATION: "iter",
TIME_TOTAL_S: "total time (s)",
TIMESTEPS_TOTAL: "ts",
EPISODE_REWARD_MEAN: "reward",
})
def __init__(self,
metric_columns=None,
parameter_columns=None,
max_progress_rows=20,
max_error_rows=20,
max_report_frequency=5):
self._metric_columns = metric_columns or self.DEFAULT_COLUMNS.copy()
self._parameter_columns = parameter_columns or []
self._max_progress_rows = max_progress_rows
self._max_error_rows = max_error_rows
self._max_report_freqency = max_report_frequency
self._last_report_time = 0
def should_report(self, trials, done=False):
if time.time() - self._last_report_time > self._max_report_freqency:
self._last_report_time = time.time()
return True
return done
def add_metric_column(self, metric, representation=None):
"""Adds a metric to the existing columns.
Args:
metric (str): Metric to add. This must be a metric being returned
in training step results.
representation (str): Representation to use in table. Defaults to
`metric`.
"""
if metric in self._metric_columns:
raise ValueError("Column {} already exists.".format(metric))
if isinstance(self._metric_columns, Mapping):
representation = representation or metric
self._metric_columns[metric] = representation
else:
if representation is not None and representation != metric:
raise ValueError(
"`representation` cannot differ from `metric` "
"if this reporter was initialized with a list "
"of metric columns.")
self._metric_columns.append(metric)
def add_parameter_column(self, parameter, representation=None):
"""Adds a parameter to the existing columns.
Args:
parameter (str): Parameter to add. This must be a parameter
specified in the configuration.
representation (str): Representation to use in table. Defaults to
`parameter`.
"""
if parameter in self._parameter_columns:
raise ValueError("Column {} already exists.".format(parameter))
if isinstance(self._parameter_columns, Mapping):
representation = representation or parameter
self._parameter_columns[parameter] = representation
else:
if representation is not None and representation != parameter:
raise ValueError(
"`representation` cannot differ from `parameter` "
"if this reporter was initialized with a list "
"of metric columns.")
self._parameter_columns.append(parameter)
def _progress_str(self, trials, done, *sys_info, fmt="psql", delim="\n"):
"""Returns full progress string.
This string contains a progress table and error table. The progress
table describes the progress of each trial. The error table lists
the error file, if any, corresponding to each trial. The latter only
exists if errors have occurred.
Args:
trials (list[Trial]): Trials to report on.
done (bool): Whether this is the last progress report attempt.
fmt (str): Table format. See `tablefmt` in tabulate API.
delim (str): Delimiter between messages.
"""
messages = ["== Status ==", memory_debug_str(), *sys_info]
if done:
max_progress = None
max_error = None
else:
max_progress = self._max_progress_rows
max_error = self._max_error_rows
messages.append(
trial_progress_str(
trials,
metric_columns=self._metric_columns,
parameter_columns=self._parameter_columns,
fmt=fmt,
max_rows=max_progress))
messages.append(trial_errors_str(trials, fmt=fmt, max_rows=max_error))
return delim.join(messages) + delim
[docs]class JupyterNotebookReporter(TuneReporterBase):
"""Jupyter notebook-friendly Reporter that can update display in-place.
Args:
overwrite (bool): Flag for overwriting the last reported progress.
metric_columns (dict[str, str]|list[str]): Names of metrics to
include in progress table. If this is a dict, the keys should
be metric names and the values should be the displayed names.
If this is a list, the metric name is used directly.
parameter_columns (dict[str, str]|list[str]): Names of parameters to
include in progress table. If this is a dict, the keys should
be parameter names and the values should be the displayed names.
If this is a list, the parameter name is used directly. If empty,
defaults to all available parameters.
max_progress_rows (int): Maximum number of rows to print
in the progress table. The progress table describes the
progress of each trial. Defaults to 20.
max_error_rows (int): Maximum number of rows to print in the
error table. The error table lists the error file, if any,
corresponding to each trial. Defaults to 20.
max_report_frequency (int): Maximum report frequency in seconds.
Defaults to 5s.
"""
def __init__(self,
overwrite,
metric_columns=None,
parameter_columns=None,
max_progress_rows=20,
max_error_rows=20,
max_report_frequency=5):
super(JupyterNotebookReporter, self).__init__(
metric_columns, parameter_columns, max_progress_rows,
max_error_rows, max_report_frequency)
self._overwrite = overwrite
def report(self, trials, done, *sys_info):
from IPython.display import clear_output
from IPython.core.display import display, HTML
if self._overwrite:
clear_output(wait=True)
progress_str = self._progress_str(
trials, done, *sys_info, fmt="html", delim="<br>")
display(HTML(progress_str))
[docs]class CLIReporter(TuneReporterBase):
"""Command-line reporter
Args:
metric_columns (dict[str, str]|list[str]): Names of metrics to
include in progress table. If this is a dict, the keys should
be metric names and the values should be the displayed names.
If this is a list, the metric name is used directly.
parameter_columns (dict[str, str]|list[str]): Names of parameters to
include in progress table. If this is a dict, the keys should
be parameter names and the values should be the displayed names.
If this is a list, the parameter name is used directly. If empty,
defaults to all available parameters.
max_progress_rows (int): Maximum number of rows to print
in the progress table. The progress table describes the
progress of each trial. Defaults to 20.
max_error_rows (int): Maximum number of rows to print in the
error table. The error table lists the error file, if any,
corresponding to each trial. Defaults to 20.
max_report_frequency (int): Maximum report frequency in seconds.
Defaults to 5s.
"""
def __init__(self,
metric_columns=None,
parameter_columns=None,
max_progress_rows=20,
max_error_rows=20,
max_report_frequency=5):
super(CLIReporter, self).__init__(metric_columns, parameter_columns,
max_progress_rows, max_error_rows,
max_report_frequency)
def report(self, trials, done, *sys_info):
print(self._progress_str(trials, done, *sys_info))
def memory_debug_str():
try:
import ray # noqa F401
import psutil
total_gb = psutil.virtual_memory().total / (1024**3)
used_gb = total_gb - psutil.virtual_memory().available / (1024**3)
if used_gb > total_gb * 0.9:
warn = (": ***LOW MEMORY*** less than 10% of the memory on "
"this node is available for use. This can cause "
"unexpected crashes. Consider "
"reducing the memory used by your application "
"or reducing the Ray object store size by setting "
"`object_store_memory` when calling `ray.init`.")
else:
warn = ""
return "Memory usage on this node: {}/{} GiB{}".format(
round(used_gb, 1), round(total_gb, 1), warn)
except ImportError:
return ("Unknown memory usage. Please run `pip install psutil` "
"(or ray[debug]) to resolve)")
def trial_progress_str(trials,
metric_columns,
parameter_columns=None,
fmt="psql",
max_rows=None):
"""Returns a human readable message for printing to the console.
This contains a table where each row represents a trial, its parameters
and the current values of its metrics.
Args:
trials (list[Trial]): List of trials to get progress string for.
metric_columns (dict[str, str]|list[str]): Names of metrics to include.
If this is a dict, the keys are metric names and the values are
the names to use in the message. If this is a list, the metric
name is used in the message directly.
parameter_columns (dict[str, str]|list[str]): Names of parameters to
include. If this is a dict, the keys are parameter names and the
values are the names to use in the message. If this is a list,
the parameter name is used in the message directly. If this is
empty, all parameters are used in the message.
fmt (str): Output format (see tablefmt in tabulate API).
max_rows (int): Maximum number of rows in the trial table. Defaults to
unlimited.
"""
messages = []
delim = "<br>" if fmt == "html" else "\n"
if len(trials) < 1:
return delim.join(messages)
num_trials = len(trials)
trials_by_state = collections.defaultdict(list)
for t in trials:
trials_by_state[t.status].append(t)
for local_dir in sorted({t.local_dir for t in trials}):
messages.append("Result logdir: {}".format(local_dir))
num_trials_strs = [
"{} {}".format(len(trials_by_state[state]), state)
for state in sorted(trials_by_state)
]
max_rows = max_rows or float("inf")
if num_trials > max_rows:
# TODO(ujvl): suggestion for users to view more rows.
trials_by_state_trunc = _fair_filter_trials(trials_by_state, max_rows)
trials = []
overflow_strs = []
for state in sorted(trials_by_state):
trials += trials_by_state_trunc[state]
num = len(trials_by_state[state]) - len(
trials_by_state_trunc[state])
if num > 0:
overflow_strs.append("{} {}".format(num, state))
# Build overflow string.
overflow = num_trials - max_rows
overflow_str = ", ".join(overflow_strs)
else:
overflow = False
messages.append("Number of trials: {} ({})".format(
num_trials, ", ".join(num_trials_strs)))
# Pre-process trials to figure out what columns to show.
if isinstance(metric_columns, Mapping):
metric_keys = list(metric_columns.keys())
else:
metric_keys = metric_columns
metric_keys = [
k for k in metric_keys if any(
t.last_result.get(k) is not None for t in trials)
]
if not parameter_columns:
parameter_keys = sorted(
set().union(*[t.evaluated_params for t in trials]))
elif isinstance(parameter_columns, Mapping):
parameter_keys = list(parameter_columns.keys())
else:
parameter_keys = parameter_columns
# Build trial rows.
trial_table = [
_get_trial_info(trial, parameter_keys, metric_keys) for trial in trials
]
# Format column headings
if isinstance(metric_columns, Mapping):
formatted_metric_columns = [metric_columns[k] for k in metric_keys]
else:
formatted_metric_columns = metric_keys
if isinstance(parameter_columns, Mapping):
formatted_parameter_columns = [
parameter_columns[k] for k in parameter_keys
]
else:
formatted_parameter_columns = parameter_keys
columns = (["Trial name", "status", "loc"] + formatted_parameter_columns +
formatted_metric_columns)
# Tabulate.
messages.append(
tabulate(trial_table, headers=columns, tablefmt=fmt, showindex=False))
if overflow:
messages.append("... {} more trials not shown ({})".format(
overflow, overflow_str))
return delim.join(messages)
def trial_errors_str(trials, fmt="psql", max_rows=None):
"""Returns a readable message regarding trial errors.
Args:
trials (list[Trial]): List of trials to get progress string for.
fmt (str): Output format (see tablefmt in tabulate API).
max_rows (int): Maximum number of rows in the error table. Defaults to
unlimited.
"""
messages = []
failed = [t for t in trials if t.error_file]
num_failed = len(failed)
if num_failed > 0:
messages.append("Number of errored trials: {}".format(num_failed))
if num_failed > (max_rows or float("inf")):
messages.append("Table truncated to {} rows ({} overflow)".format(
max_rows, num_failed - max_rows))
error_table = []
for trial in failed[:max_rows]:
row = [str(trial), trial.num_failures, trial.error_file]
error_table.append(row)
columns = ["Trial name", "# failures", "error file"]
messages.append(
tabulate(
error_table, headers=columns, tablefmt=fmt, showindex=False))
delim = "<br>" if fmt == "html" else "\n"
return delim.join(messages)
def _fair_filter_trials(trials_by_state, max_trials):
"""Filters trials such that each state is represented fairly.
The oldest trials are truncated if necessary.
Args:
trials_by_state (dict[str, list[Trial]]: Trials by state.
max_trials (int): Maximum number of trials to return.
Returns:
Dict mapping state to List of fairly represented trials.
"""
num_trials_by_state = collections.defaultdict(int)
no_change = False
# Determine number of trials to keep per state.
while max_trials > 0 and not no_change:
no_change = True
for state in sorted(trials_by_state):
if num_trials_by_state[state] < len(trials_by_state[state]):
no_change = False
max_trials -= 1
num_trials_by_state[state] += 1
# Sort by start time, descending.
sorted_trials_by_state = {
state: sorted(
trials_by_state[state], reverse=False, key=lambda t: t.trial_id)
for state in sorted(trials_by_state)
}
# Truncate oldest trials.
filtered_trials = {
state: sorted_trials_by_state[state][:num_trials_by_state[state]]
for state in sorted(trials_by_state)
}
return filtered_trials
def _get_trial_info(trial, parameters, metrics):
"""Returns the following information about a trial:
name | status | loc | params... | metrics...
Args:
trial (Trial): Trial to get information for.
parameters (list[str]): Names of trial parameters to include.
metrics (list[str]): Names of metrics to include.
"""
result = trial.last_result
config = trial.config
trial_info = [str(trial), trial.status, str(trial.location)]
trial_info += [
unflattened_lookup(param, config, default=None) for param in parameters
]
trial_info += [
unflattened_lookup(metric, result, default=None) for metric in metrics
]
return trial_info