"""This test checks that BayesOpt is functional.
It also checks that it is usable with a separate scheduler.
"""
import time
import ray
from ray import tune
from ray.tune.schedulers import AsyncHyperBandScheduler
from ray.tune.suggest.bayesopt import BayesOptSearch
def evaluation_fn(step, width, height):
return (0.1 + width * step / 100)**(-1) + height * 0.1
def easy_objective(config):
# Hyperparameters
width, height = config["width"], config["height"]
for step in range(config["steps"]):
# Iterative training function - can be any arbitrary training procedure
intermediate_score = evaluation_fn(step, width, height)
# Feed the score back back to Tune.
tune.report(iterations=step, mean_loss=intermediate_score)
time.sleep(0.1)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing")
args, _ = parser.parse_known_args()
ray.init()
tune_kwargs = {
"num_samples": 10 if args.smoke_test else 1000,
"config": {
"steps": 100,
"width": tune.uniform(0, 20),
"height": tune.uniform(-100, 100)
}
}
algo = BayesOptSearch(
metric="mean_loss",
mode="min",
utility_kwargs={
"kind": "ucb",
"kappa": 2.5,
"xi": 0.0
})
scheduler = AsyncHyperBandScheduler(metric="mean_loss", mode="min")
tune.run(
easy_objective,
name="my_exp",
search_alg=algo,
scheduler=scheduler,
**tune_kwargs)