#!/usr/bin/env python
"""Example of using PBT with RLlib.
Note that this requires a cluster with at least 8 GPUs in order for all trials
to run concurrently, otherwise PBT will round-robin train the trials which
is less efficient (or you can set {"gpu": 0} to use CPUs for SGD instead).
Note that Tune in general does not need 8 GPUs, and this is just a more
computationally demanding example.
"""
import random
import ray
from ray.tune import run, sample_from
from ray.tune.schedulers import PopulationBasedTraining
if __name__ == "__main__":
# Postprocess the perturbed config to ensure it's still valid
def explore(config):
# ensure we collect enough timesteps to do sgd
if config["train_batch_size"] < config["sgd_minibatch_size"] * 2:
config["train_batch_size"] = config["sgd_minibatch_size"] * 2
# ensure we run at least one sgd iter
if config["num_sgd_iter"] < 1:
config["num_sgd_iter"] = 1
return config
pbt = PopulationBasedTraining(
time_attr="time_total_s",
metric="episode_reward_mean",
mode="max",
perturbation_interval=120,
resample_probability=0.25,
# Specifies the mutations of these hyperparams
hyperparam_mutations={
"lambda": lambda: random.uniform(0.9, 1.0),
"clip_param": lambda: random.uniform(0.01, 0.5),
"lr": [1e-3, 5e-4, 1e-4, 5e-5, 1e-5],
"num_sgd_iter": lambda: random.randint(1, 30),
"sgd_minibatch_size": lambda: random.randint(128, 16384),
"train_batch_size": lambda: random.randint(2000, 160000),
},
custom_explore_fn=explore)
ray.init()
run(
"PPO",
name="pbt_humanoid_test",
scheduler=pbt,
num_samples=8,
config={
"env": "Humanoid-v1",
"kl_coeff": 1.0,
"num_workers": 8,
"num_gpus": 1,
"model": {
"free_log_std": True
},
# These params are tuned from a fixed starting value.
"lambda": 0.95,
"clip_param": 0.2,
"lr": 1e-4,
# These params start off randomly drawn from a set.
"num_sgd_iter": sample_from(
lambda spec: random.choice([10, 20, 30])),
"sgd_minibatch_size": sample_from(
lambda spec: random.choice([128, 512, 2048])),
"train_batch_size": sample_from(
lambda spec: random.choice([10000, 20000, 40000]))
})