import argparse
import numpy as np
from tensorflow.keras.datasets import mnist
from ray.tune.integration.keras import TuneReportCallback
parser = argparse.ArgumentParser()
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing")
args, _ = parser.parse_known_args()
def train_mnist(config):
# https://github.com/tensorflow/tensorflow/issues/32159
import tensorflow as tf
batch_size = 128
num_classes = 10
epochs = 12
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(config["hidden"], activation="relu"),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(num_classes, activation="softmax")
])
model.compile(
loss="sparse_categorical_crossentropy",
optimizer=tf.keras.optimizers.SGD(
lr=config["lr"], momentum=config["momentum"]),
metrics=["accuracy"])
model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
verbose=0,
validation_data=(x_test, y_test),
callbacks=[TuneReportCallback({
"mean_accuracy": "accuracy"
})])
if __name__ == "__main__":
import ray
from ray import tune
from ray.tune.schedulers import AsyncHyperBandScheduler
mnist.load_data() # we do this on the driver because it's not threadsafe
ray.init(num_cpus=4 if args.smoke_test else None)
sched = AsyncHyperBandScheduler(
time_attr="training_iteration",
metric="mean_accuracy",
mode="max",
max_t=400,
grace_period=20)
tune.run(
train_mnist,
name="exp",
scheduler=sched,
stop={
"mean_accuracy": 0.99,
"training_iteration": 5 if args.smoke_test else 300
},
num_samples=10,
resources_per_trial={
"cpu": 2,
"gpu": 0
},
config={
"threads": 2,
"lr": tune.sample_from(lambda spec: np.random.uniform(0.001, 0.1)),
"momentum": tune.sample_from(
lambda spec: np.random.uniform(0.1, 0.9)),
"hidden": tune.sample_from(
lambda spec: np.random.randint(32, 512)),
})